
Abstract A computational metric is introduced for the
design of combinatorial libraries focused on small mole-
cules with specific activity (e.g., enzyme inhibitors). The
method follows a product-based design strategy and uses
combinations of two binary molecular fingerprints to
create chemical diversity around selected compounds
and/or core structures. In the first step, compounds are
sampled that are distinct from template molecules but
likely to share similar biological activity. In the second
step, designed compounds are accepted if they are not
too similar to each other, as assessed by calculation of
fingerprint overlap. Thus, it is possible to balance molec-
ular “similarity” and “diversity” and control the degree
of chemical diversity created in the vicinity of selected
template molecules. In essence, the method aims to gen-
erate diverse arrays of compounds with a high probabil-
ity of having activity similar to starting molecule(s) and
is therefore well suited for the design of target-focused
libraries or series of analogs. As an example, the method
is applied to focus libraries on known protein kinase in-
hibitors.
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Introduction

Computational design and analysis of compound libraries,
[1, 2, 3, 4, 5, 6] have become integral parts of combina-
torial chemistry programs. [7, 8, 9, 10, 11] A variety of
algorithms and alternative strategies for diversity-oriented

library design have been introduced. [12, 13, 14, 15, 16]
In addition to chemically diverse libraries, which are
typically used for screening against multiple targets, sig-
nificant effort is being spent to generate more specialized
libraries for drug discovery. These include chemical li-
braries enriched with compounds having drug-like prop-
erties, [17, 18, 19, 20, 21, 22] and libraries focused on
specific biological targets, activities [23, 24, 25, 26], or
therapeutic applications. [27] Approaches to the genera-
tion of target-focused libraries often involve a combina-
tion of structure-based design elements and combinato-
rial chemistry [28, 29, 30, 31], provided three-dimen-
sional structures of therapeutically relevant targets are
available. Alternatively, target focus can be achieved by
concentrating on small molecules that display or mediate
a specific biological activity, e.g., substrates, cofactors,
or known inhibitors. [23, 24, 25, 26]

The design of combinatorial libraries is, in general,
either reaction- or product-based. [32, 33, 34] In reac-
tion-based design, encoded chemical transformations are
applied to pools of reactants, the selection of which be-
comes the primary determinant of diversity in the result-
ing library. By contrast, in product-based design, selected
molecular building blocks, often called frameworks, [35]
or scaffolds [36] are combined with R-groups at pre-
specified attachment points. In this case, computational
metrics are applied to sample diverse compounds from
the vast chemical space defined by possible products.
However, sampling of compounds is constrained by the
choice of templates or scaffolds and the usually limited
number of selected points of diversity. The relative per-
formance of these alternative approaches depends, in ad-
dition to computational parameters, on the nature of their
application. [32, 34] For example, reaction-based design
is an effective approach for generating large and chemi-
cally diverse libraries required for screening, [2, 4]
whereas a product-based strategy is particularly attrac-
tive when selected core structures or molecular scaffolds
provide starting points for design. [25, 26] This is typi-
cally the case for focused libraries that are based on
small molecules with specific activities or properties.
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Such libraries are usually much smaller than diverse
screening libraries and their performance depends,
among other aspects, on the ability to extract information
encoded in small molecules with desired properties (e.g.,
hits obtained from screening). Therefore, a critical step
is the isolation of building blocks or scaffolds from these
molecules. Suitable molecular scaffolds can be isolated
by various means, e.g., knowledge of active core struc-
tures, [26] synthetic considerations, [35] or algorithms
that follow hierarchical descriptions of molecules. [36,
37] Isolated scaffolds are then used to sample diverse
scaffold/R-group combinations. This process aims to in-
crease the probability of finding more potent and/or
selective compounds by exploring the neighborhood of
template molecules in chemical space. [26, 38] The de-
sign critically depends on the computational metric ap-
plied to generate compounds. Typically, this would be a
distance- [34] or cell-based [14] measure of chemical di-
versity utilizing selected molecular descriptors. [39, 40]

In this report, we introduce a novel computational
metric to focus combinatorial libraries and control their
degree of diversity. In this approach, the use of different
fingerprints and similarity criteria determines the bal-
ance between similarity to compounds of known activity
and library diversity. The algorithm was implemented for
product-based design of targeted libraries or analogs of
biologically active molecules. Generation of virtual
libraries for the identification of protein kinase inhibitors
exemplifies this form of controlled (or directed) diversity
design.

Materials and methods

The algorithm, as described in the Results section, was established
using SVL code [41] and implemented in the Molecular Operating
Environment (MOE). [42] The implementation makes use of a
built-in function of MOE, the compound generator of the Qua-
SAR-CombiDesign module that randomly samples combinations
of scaffolds and R-groups from different source databases. [43] As
a scaffold database, 57 previously generated core structures were
used that target the ATP binding site in protein kinases. [26] These
scaffolds were mostly isolated from known kinase inhibitors. [26]
As R-group database, we used an in-house generated set of ~1,500
different groups. Non-ring R-groups were automatically isolated
from ACD compounds [44] using a previously reported algorithm
[37] and ring moieties identified by the RECAP approach [35]
were added.

In our calculations, three binary fingerprints of different length
and complexity that could be calculated from two-dimensional
molecular representations were used. “MFP” is a mini-fingerprint
[45] consisting of only 62 bit positions [46] accounting for ranges
of three numerical descriptors (the number of hydrogen bonding
acceptors and rotatable and aromatic bonds in a molecule) and the
presence or absence of 40 structural fragments or keys. [47, 48]
Different mini-fingerprints were designed, on the basis of exten-
sive descriptor analysis, to recognize molecules with similar bio-
logical activity specifically. [45, 46] In blind test calculations,
MFP was found to have a greater than 50% chance of identifying
molecules with similar activity but recognized only ~1% false
positives. [46] The second fingerprint (“MACCS”) consists of 
166 bits, each of which accounts for the presence or absence of
one of 166 structural keys. [47, 48] The third fingerprint used in
our calculations is a complex fingerprint consisting of 1,024 bit
positions, implemented as “PH2D” in MOE. It accounts for all

pairwise atomic distances in a molecule, on the basis of graph rep-
resentations, and creates a signature pattern. [49] A complex fin-
gerprint such as PH2D evaluates molecules at “high resolution”
and thus has a higher intrinsic tendency to consider compounds
“dissimilar” or generate “diversity” (when used for library genera-
tion). In terms of increasing complexity, the three fingerprints
used here compare as follows: MFP<MACCS<PH2D.

Using combinations of these fingerprints, different libraries
were calculated, each containing 500 to 1,000 compounds (gener-
ated from the set of 57 protein kinase inhibitor scaffolds and our
R-group collection). During the design process, compounds were
filtered according to Lipinski’s rules [17] to ensure basic drug-like
properties. As a similarity criterion, fingerprint overlap was calcu-
lated for pairwise comparison of compounds using the Tanimoto
coefficient (Tc). [50] It is defined as Tc=bc/(b1+b2–bc), with b1
being the number of bits set on in molecule 1, b2 the number of
bits set on in molecule 2, and bc the number of bits set on com-
mon to both molecules. Scaffold and Tc value distributions of the
generated libraries were compared using histograms. Compound
distribution in three-dimensional “chemical space” was compared
following principal component analysis (PCA) of those molecular
descriptors used to generate the fingerprints. [51] For example, all
unique descriptors encoded in MACCS and MFP were combined
to create an initial multi-dimensional chemical space, the dimen-
sionality of which was then reduced to three by PCA, carried out
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Fig. 1 Description of the method. Scaffolds are isolated from
compounds of interest. Kinase inhibitors are used as an example.
Asterisks indicate points for R-group attachment. Randomly sam-
pled scaffold/R-group combinations are evaluated according to the
flow chart. Calculation of FP1 represents the “similarity step”, as
described in the text, and FP2 the “diversity step”. The calcula-
tions end once a specified number of compounds have been gener-
ated



with MOE as described. [52] These first three principal compo-
nents were then used as a coordinate system for graphical repre-
sentation of libraries.

Results and discussions

Introduction of the method

Our algorithm is described in Fig. 1. Initially, a collec-
tion of molecular scaffolds, isolated from compounds of
interest (here kinase inhibitors), is used to sample one
candidate compound at a time. In this case, scaffolds
have between one and four points of diversity that are
randomly decorated with R-groups. For each newly as-
sembled compound, fingerprint 1 (FP1) is calculated and
compared with FP1 of selected inhibitors from which
scaffolds were isolated. If Tc1 is, at least once, greater
than a specified cut-off value (cut-off 1), then the com-
pound is accepted. This means that the newly assembled
compound must be “similar” to (or in the chemical
“neighborhood” of) at least one of the original inhibitors.
In this case, each randomly generated compound was
compared with four original kinase inhibitors. If a com-
pound is accepted on the basis of Tc1 comparison, it is,
in the second step, compared with all compounds previ-
ously accepted by Tc1 comparison (it follows that the
first compound passing the Tc1 test will always be in the

library). For this second step, a different fingerprint
(FP2) is used from which Tc2 values are calculated (it is
important to note that comparisons are only made for as-
sembled compounds and not at the level of molecular
scaffolds). If Tc2 is, in at least one case, greater than a
specified cut-off 2 value, the new compound is rejected.
This means only those compounds are added to the array
that are sufficiently “distant” from other library com-
pounds, thereby generating diversity. Thus, in our imple-
mentation, FP1 comparisons represent the “similarity
step” and FP2 comparisons the “diversity step”.

Focusing versus diversity sampling

The similarity step is a requisite for focusing of the library
in product space. FP1 comparisons ensure that each
library compound is in the neighborhood of at least one
biologically active compound selected as a starting point
for library design. However, the approach, as implemented
here, can also be used for more conventional diversity
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Fig. 2 Chart of selected protein kinase inhibitors. Structures of
five protein kinase inhibitors (see [26] and references cited there-
in) are shown that were used to design a focused library (inhibitors
2–4) or analog libraries (inhibitor 1)

Fig. 3 Analysis of a focused library. In (a), a three-dimensional
(“chemical space”) stereo representation of the library is shown.
PC -1, -2, and –3 are the principal component axes of molecular
descriptor space. The positions of template inhibitors are shown in
black. Compounds belonging to the focused library are colored
red and compounds in the diverse reference library blue. (b) Dis-
tribution of the Tanimoto coefficient (Tc) in the focused (red) and
diverse (blue) library. Each compound in the library was compared
with all other compounds using MACCS as a fingerprint, and Tc
values for complete pairwise comparisons are recorded. A shift of
the distribution towards higher Tc values indicates increasing sim-
ilarity of library compounds



design. If cut-off 1 is set to zero, the procedure defaults
to diversity sampling in step 2. By contrast, if cut-off 2 is
set to 1, only focusing is carried out and no diversity cri-
teria are applied. Thus, dependent on the desired applica-
tion, a balance between focusing and chemical diversifi-
cation is achieved by adjusting the parameters.

Focused libraries versus analog design

In our approach, analog design can be rationalized as a
special case of focusing where only one inhibitor is used
to select compounds. In order to ensure that accepted
compounds are closely related to the original inhibitor, a
more stringent Tc1 criterion is used in the similarity step.
Subsequently, a diversity criterion is applied to select
analogs that are not too similar to each other. Focused
and analog libraries are typically much smaller (~1,000–
10,000 compounds) than libraries designed for screening
on multiple targets (~100,000 compounds or more).
Therefore, a vast number of possibilities exist in focused
library and analog design for sampling chemical space
close to template molecules, and our algorithm was de-
signed to produce one possible solution for a library of
limited size. Most importantly, it aims to balance the
similarity of designed compounds to molecules with
known activity with the diversity of the library.

Selection of fingerprints

Our compound design process is carried out using differ-
ent fingerprint representations. For the similarity step,
we apply mini-fingerprints (MFP; see Methods) specifi-
cally designed to recognize molecules with similar activ-
ity. [45] Thus, selection of compounds on the basis of
MFP and using a cut-off 1 of 0.7 or greater is thought to
increase the probability of generating compounds with
activity similar to a template molecule. [45, 46] For the
diversity step, fingerprints of medium (e.g., MACCS) to
high complexity (e.g., PH2D) are used, which distin-
guish more chemical details than mini-fingerprints.

Design of focused libraries

As an application of the dual fingerprint approach, we
have designed a library focused on known protein kinase
inhibitors (compounds number 2 to 5 in the chart shown
in Fig. 2). In this calculation, 57 scaffolds were used as a
source (some of which were directly derived from these
inhibitors). For the similarity step, MFP (FP1) was used
and for the diversity step, MACCS (FP2) was selected.
Tc1 and Tc2 cut-off values were set to 0.70 and 0.85, re-
spectively, and a total of 1,000 compounds were sam-
pled. These cut-off values were set as previously sug-
gested for detection of molecules with similar activity
[45] and diversity design, [38] respectively. In a refer-
ence calculation, 1,000 compounds were generated from
57 scaffolds by diversity sampling only with MACCS
(cut-off 2=0.85). Under these conditions, both libraries
were generated rapidly, each requiring less than 30 min

of CPU time on an SGI Octane workstation. This is be-
cause compound sampling largely relies on simple pair-
wise fingerprint comparisons. Only the diversity step re-
quires an increasing number of calculations as the library
grows. Figure 3a shows a graphical representation of
these two libraries in principal component space comput-
ed from the combined descriptor settings of the two fin-
gerprints (MFP and MACCS). It illustrates the effect of
the focusing step. Although the set of 57 scaffolds pro-
vided the basis for both calculations, compounds in the
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Fig. 4 Analysis of analog libraries. In (a), a chemical space repre-
sentation of the first analog library (red; cut-off 1=0.80, cut-off
2=0.85) and the diverse reference library (blue) is shown relative
to the position of the target inhibitor (black). The orientation of
the stereo view is the same as in Fig. 3. (b) shows the comparison
of Tc profiles of the reference library (blue) and the first (red) and
second analog library (green; cut-off 1=0.88, cut-off 2=0.97). The
Tc distributions were calculated using MACCS as described in the
legend of Fig. 3. In (c), a chemical space comparison of the two
analog libraries (red and green) is shown. The inhibitor is in black.
The orientation of the stereo view is the same as before



focused library (red) are much more concentrated in the
vicinity of the original inhibitors (black) than com-
pounds obtained by diversity sampling (blue). Figure 3b
shows a histogram recording Tc values for all pairwise
comparisons within each library. The Tc distribution also
reflects the focusing effect. It is relatively broad for the
diverse library and narrow for the focused library and
shifted towards higher Tc values. Thus, compounds in
the focused library are not only more similar to the se-

lected inhibitors (“focal points”) but also more similar to
each other than in the diverse reference library. 

Design of analog libraries

One of the inhibitors shown in the chart in Fig. 2 (RPR-
108518A) was selected to build an analog library. The
set of 57 scaffolds, MFP (FP1; similarity step), and
MACCS (FP2; diversity step) were also used in this cal-
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Fig. 5 Scaffold distribution in
diverse libraries. The lower his-
togram shows the frequency of
occurrence of 57 molecular
scaffolds (ordered according to
increasing molecular weight) in
a library computed using
MACCS. The upper representa-
tion compares results obtained
for three different fingerprints,
MFP (red), MACCS (yellow),
and PH2D (blue). Positions of
representative scaffolds are
labeled



culation. However, cut-off 1 was now increased to 0.80.
As before, cut-off 2 was set to 0.85. Since the similarity
step focused compounds here more stringently on one
(and only one) template molecule, it was more difficult
to find molecules that passed the diversity test and,
accordingly, several hours of calculation time were re-
quired to generate an analog library containing 500 com-
pounds. We found that a total of 24 of 57 scaffolds were
represented in this library. As a reference library, 
500 compounds were generated by diversity sampling
using MACCS (Tc2=0.85). Figure 4a illustrates the de-
sired effect of focusing on one inhibitor. The majority of
compounds generated surround the inhibitor in principal
component space. Enhanced focusing by more stringent
Tc1 criterion is revealed by comparison of Tc distribu-
tions (Fig. 4b). The distribution of the analog library
(red) is now narrower, further separated from the refer-
ence library (blue), and shifted towards higher Tc values
than was the case for the focused library shown in
Fig. 3b. In an additional analog library calculation, cut-
off 1 was set to 0.88 and cut-off 2 to 0.97. It follows that
compounds more similar to the original inhibitor should
be generated in the first step (corresponding to further
enhanced focusing) and that, in the second step, only
those compounds are rejected that are very similar or al-
most identical. As shown in Fig. 4b, the Tc distribution
of this library (green) is even narrower and further
shifted towards higher Tc values than the Tc distribution
of the first analog library (red), thus confirming the an-
ticipated effect. Figure 4c compares the two analog
libraries in principal component space and illustrates that
the distribution of compounds in the second analog
library is more focused on the target inhibitor.

Diversity analysis

In an additional application, three different libraries,
each containing 1,000 compounds, were computed by
applying only the diversity step (cut-off 2=0.75) and us-
ing three fingerprints of different complexity (MFP,
MACCS, and PH2D; see Methods). In each case, the dis-
tribution of our source scaffolds in library compounds
was determined. The results reported in Fig. 5 show that
scaffolds are not evenly distributed in designed com-
pounds. In general, lower molecular weight scaffolds
occur much more frequently in each library than larger
scaffolds. Structures of representative scaffolds that are
often or, alternatively, rarely utilized are shown in the
chart in Fig. 6. The prevalence of lower molecular
weight scaffolds is consistent with the idea that addition
of R-groups to small core structures leads to greater rela-
tive diversity (i.e., more changes in fingerprint bit set-
tings) than addition to large cores. Thus, at relatively low
Tc cut-off values (accounting for fingerprint overlap), it
is easier to sample compounds that pass the diversity test
if core structures are small. However, the results in the
chart in Fig. 6 also show that the scaffold distribution is
influenced by the complexity of the applied fingerprint.
In the case of PH2D (consisting of 1,024 bits), the distri-

bution is shifted towards higher molecular weight scaf-
folds because this complex fingerprint is more sensitive
to changes in minor chemical details. Thus, in this case,
addition of R-groups creates “diverse” compounds more
easily, even if larger scaffolds are utilized. These obser-
vations reinforce the application of conceptually differ-
ent fingerprints in our calculations. For the similarity
step, fingerprints designed to capture molecular features
responsible for specific biological activities [45] are pre-
ferred. By contrast, for the diversity step, complex fin-
gerprints more sensitive to minor variations in structure
or chemical properties are more appropriate, since they
are likely to provide a more even distribution of pre-
selected scaffolds in library compounds. 

Although other diversity algorithms have been de-
scribed in the literature, especially for clustering of com-
pounds or selection of “representative” compounds from
databases, e.g. [53, 54, 55], our method differs from pre-
vious work. It deliberately combines a similarity step
with a diversity step and, in addition, it is entirely finger-
print-based. Since we start from randomly generated
compounds, our approach is in essence a “filtering”
method. Conceptually, it is perhaps most similar to, yet
distinct from, the “OptiSim” approach, [53] which also
uses fingerprints for “dissimilarity” selection.

Conclusions

We have introduced a fingerprint-based metric to control
the level of chemical diversity achieved in product-based
design of compound libraries. It was specifically imple-
mented for focusing of libraries and can be applied to
any collection of molecular building blocks or core
structures of interest, however obtained. Dependent on
the calculation parameters, the method can be used to de-
sign target-focused libraries, generate analogs, or, in its
simplest form, sample diverse compounds. An attractive
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Fig. 6 Chart of structures of scaffolds in Fig. 5 either frequently
or rarely utilized. Asterisks indicate points for R-group attachment



feature of the dual fingerprint approach is that it provides
an easily adjustable balance between the similarity of de-
signed molecules to selected templates and the diversity
of compounds in the library.

References

1. Martin, E. J.; Blaney, J. M.; Siani, M. A.; Spellmeyer, D. C.;
Wong, A. K.; Moos, W. H. J. Med. Chem. 1995, 38, 1431.

2. Ferguson, A. M.; Patterson, D. E.; Garr, C. D.; Underiner, 
T. L. J. Biomol. Screen. 1996, 1, 65.

3. Brown, R. D.; Martin, Y. C. J. Med. Chem. 1997, 40, 2304.
4. Cramer, R. D.; Patterson, D. E.; Clark, R. D.; Soltanshahi, F.;

Lawless, M. S. J. Chem. Inf. Comput. Sci. 1998, 38, 1010.
5. Pickett, S. D.; Luttman, C.; Guerin, V.; Laoui, A.; James, E. 

J. Chem. Inf. Comput. Sci. 1998, 38, 144.
6. Koehler, R. T.; Dixon, S. L.; Villar, H. O. J. Med. Chem. 1999,

42, 4695.
7. Terrett, N. K.; Gardner, M.; Gordon, D. W.; Kobylecki, R. J.;

Steele, J. Tetrahedron 1995, 51, 8135.
8. Balkenhohl, F.; von dem Bussche-Hunnefeld, C.; Lansky, A.;

Zechel, C. Angew. Chem. Int. Ed. Engl. 1996, 35, 2289.
9. Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555.

10. Houghten, R. A.; Pinilla, C.; Blondelle, S. E.; Dooley, C. T.;
Eichler, J.; Nefzi, A.; Ostresh, J. M. J. Med. Chem. 1999, 42,
3743.

11. Schreiber, S. L. Science 2000, 287, 1964.
12. Bures, M. G.; Martin, Y. C. Curr. Opin. Chem. Biol. 1998, 2,

376.
13. Kauvar, L. M.; Laborde, E. Curr. Opin. Drug Discov. Develop.

1998, 1, 66.
14. Pearlman, R. S.; Smith, K. M. Perspect. Drug Discov. Design

1998, 9, 339.
15. Mason, J. S.; Hermsmeier, M. A. Curr. Opin. Chem. Biol.

1999, 3, 342.
16. Polinsky, A. Curr. Opin. Drug Discov. Develop. 1999, 2, 197.
17. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Freeney, P. J.

Adv. Drug Deliv. Rev. 1997, 23, 3.
18. Ajay; Walters, P.; Murcko, M. A. J. Med. Chem. 1998, 41,

3314.
19. Sadowski, J.; Kubinyi, H. J. Med. Chem. 1998, 41, 3325.
20. Walters, W. P.; Ajay; Murcko, M. A. Curr. Opin. Chem. Biol.

1999, 3, 384.
21. Martin, E. Y.; Critchlow, R. E. J. Comb. Chem. 1999, 1, 32.
22. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Comb.

Chem. 1999, 1, 55.
23. Rice, R. L.; Rusnak, J. M.; Yokokawa, F.; Yokokawa, S.;

Messner, D. J.; Boynton, A. L.; Wipf, P.; Lazo, J. S. Biochem-
istry 1997, 36, 15965.

24. Gray, S. N.; Wodicka, L.; Thunnissen, A.-M. W. H.; Norman,
T. C.; Kwon, S.; Espinoza, F. H.; Morgan, D. O.; Barnes, G.;
LeClerc, S.; Meijer, L.; Kim, S.-H.; Lockhart, D. J.; Schultz, P.
G. Science 1998, 281, 533.

25. Szardenings, A. K.; Harris, D.; Lam, S.; Shi, L.; Tien, D.;
Wang, Y.; Patel, D. V.; Navre, M.; Campbell, D. A. J. Med.
Chem. 1998, 41, 2194.

26. Stahura, F. L.; Xue, L.; Godden, J. W.; Bajorath, J. J. Mol.
Graph. Model. 1999, 17, 1.

27. Ajay; Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1999, 42,
4942.

28. Salemme, F. R.; Spurlino, J.; Bone, R. Structure 1997, 5, 319.
29. Kubinyi, H. Curr. Opin. Drug Discov. Develop. 1998, 1, 16.
30. Antel, J. Curr. Opin. Drug Discov. Develop. 1999, 2, 224.
31. Kick, E. K.; Roe, D. C.; Skillman, A. G.; Liu, G.; Ewing, T. J.

A.; Sun, Y.; Kuntz, I. D.; Ellman, J. A. Chem. Biol. 1997, 4,
297.

32. Gillet, V. J.; Willett, P.; Bradshaw, J. J. Chem. Inf. Comput.
Sci. 1997, 37, 731.

33. Leach, R. A.; Bradshaw, J.; Green, D. V. S.; Hann, M. M. 
J. Chem. Inf. Comput. Sci. 1999, 39, 1161.

34. Jamois, E. A.; Hassan, M.; Waldman, M. J. Chem. Inf. Com-
put. Sci. 2000, 40, 63.

35. Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M.
J. Chem. Inf. Comput. Sci. 1998, 38, 511.

36. Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1996, 39, 2887.
37. Xue, L.; Bajorath, J. J. Mol. Model. 1999, 5, 97.
38. Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.;

Weinberger, L. E. J. Med. Chem. 1996, 49, 3049.
39. Brown, R. D.; Martin, Y. C. J. Chem. Inf. Comput. Sci. 1997,

37, 731.
40. Bures, M. G.; Martin, Y. C. Curr. Opin. Chem. Biol. 1998, 2,

376.
41. Santavy, M.; Labute, P. Scientific Vector Language (SVL).

Electronic publication: http://www.chemcomp.com/feature/
svl.htm. Chemical Computing Group Inc., 1255 University
Street, Montreal, Quebec, Canada, H3B 3X3.

42. Molecular Operating Environment (MOE), version 1999.05,
Chemical Computing Group Inc., 1255 University Street,
Montreal, Quebec, Canada, H3B 3X3 (see http://www.chem-
comp.com/feature/v1999_05.htm).

43. Demers, J.; Murray, S. Molecular databases and MOE.
Electronic publication: http://www.chemcomp.com/feature/
dbview.htm. Chemical Computing Group Inc., 1255 University
Street, Montreal, Quebec, Canada, H3B 3X3.

44. ACD (Available Chemicals Database), MDL Information Sys-
tems Inc., 14600 Catalina Street, San Leandro, CA 94577.

45. Xue, L.; Godden, J.; Bajorath, J. J. Chem. Inf. Comput. Sci.
1999, 39, 881.

46. Xue, L.; Godden, J.; Bajorath, J. J. Chem. Inf. Comput. Sci.
2000, 40, 1227.

47. McGregor, M. J.; Pallai, P. V. J. Chem. Inf. Comput. Sci. 1997,
37, 443.

48. MACCS structural keys, MDL Information Systems Inc.,
14600 Catalina Street, San Leandro, CA 94577.

49. Sheridan, R. P.; Bush, B. L. J. Chem. Inf. Comput. Sci. 1993,
33, 756.

50. Willett, P.; Barnard, J. M.; Downs, G. M. J. Chem. Inf. Com-
put. Sci. 1998, 38, 983.

51. Glen, W. G.; Dunn, W. J. Tetrahedron Comput. Methodol.
1989, 2, 349.

52. Labute, P. QuaSAR-Cluster: A different view of molecular
clustering. Electronic publication: http://www.chemcomp.com/
article/cluster.htm. Chemical Computing Group Inc., 1255
University Street, Montreal, Quebec, Canada, H3B 3X3.

53. Clark, R. D. J. Chem. Inf. Comput. Sci. 1997, 37, 1181.
54. Higgs, R. E.; Bemis, K. G.; Watson, I. A.; Wikel, J. H. 

J. Chem. Inf. Comput. Sci. 1997, 37, 861.
55. Reynolds, C. H.; Druker, R.; Pfahler, L. B. J. Chem. Inf. Com-

put. Sci. 1998, 38, 305.

131


